Skip to main content

Ethics in AI and Data Science

Learn how to build and incorporate ethical principles and frameworks in your AI and Data Science technology and business initiatives to add transparency, build trust, drive adoption, and lead with trust and responsibility.

...
Ethics in AI and Data Science

There is one session available:

8,896 already enrolled!
Starts Nov 21

Ethics in AI and Data Science

Learn how to build and incorporate ethical principles and frameworks in your AI and Data Science technology and business initiatives to add transparency, build trust, drive adoption, and lead with trust and responsibility.

Ethics in AI and Data Science
6 weeks
1–2 hours per week
Self-paced
Progress at your own speed
Free
Optional upgrade available

There is one session available:

8,896 already enrolled! After a course session ends, it will be archivedOpens in a new tab.
Starts Nov 21

About this course

Skip About this course

Artificial Intelligence (AI) is often touted as a key technology spurring the Fourth Industrial Revolution in which the physical, digital and biological worlds are being fused together in a way that will have a tremendous impact on our global culture and economy. The unprecedented amount of data we create every day fuels this new paradigm of AI. This new world of opportunities also brings with it concerns about security, user privacy, data misuse, surveillance, data ownership, and more. People distrust the use of artificial intelligence and institutions that rely on it without building accountability and transparency. It is the responsibility of business and technology leaders and data scientists to change that: add transparency, develop standards and share best practices to drive AI adoption with trust.

Business leaders and data professionals today need AI frameworks and methods to achieve optimal results while also being good technology and business stewards. Though companies and institutions are adopting AI principles and the language of ethics, trust and responsibility has entered emerging technologies, AI and data science, there is still confusion about when and why it’s needed. This course introduces some of the principles and frameworks that puts ethics and responsibility into practice in the data analytics profession, and offers practical approaches to technical, business and leadership dilemmas and challenges posed by work in AI and Data Science.

At a glance

  • Language: English
  • Video Transcript: English

What you'll learn

Skip What you'll learn
  • Discuss the ethical challenges of AI and Data Science.

  • Understand the impacts of AI and Data Science.

  • Explore both the business and societal dynamics at work in an AI world.

  • Understand how to begin setting up a framework for AI Principles.

  • Discuss practical strategy and challenges of building an AI framework.

  • Learn the tools to put ethics and responsibility into practice at your organization or company.

  • Welcome!
  • Chapter 1. What's at Stake? The Need for Ethics, Trust & Responsibility
  • Chapter 2. What Do We Mean by Artificial Intelligence (AI)?
  • Chapter 3. The Complex World of Data
  • Chapter 4. The Challenges & Strategies for Putting Ethics into Practice
  • Final Exam (Verified track only)

About the instructors

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX For Business.